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Abstract-A mathematical model to study the influence on the system vibration modes of one or
two cracks in a uniform prismatic beam elastically restrained against rotation and translation at
both ends and carrying lumped masses with rotary inertia, is presented. Parametric studies are
carried out for the effect of stiffness of elastic constraints, the location and magnitude of cracks,
concentrated masses and their rotary inertia, for the 10 combinations of the well known four
classical end conditions, on the natural frequency parameters and mode shapes of the system. A
system frequency equation is derived in a discrete matrix form. Good agreement is found between
the results obtained using the model presented and those of previous investigators. The typical
frequency charts of the present study may be useful to engineering design and non-destructive
testing analysts as a tool for diagnosis and detection of cracks in engineering applications.

I. INTRODUCTION

Strong interest has developed within the past several years in the dynamic behaviour of
beams and shafts with cracks. Vibration investigation ofdamaged structures is one approach
for fault diagnosis. Vibration diagnosis, as a non-destructive detection technique, has
recently become of greater importance. An ultrasonic pulse technique has been successfully
used to detect the positions of cracks in structures and welds. In some materials, this
technique may not be practical due to the large attenuation of the signal at all frequencies
except a particular one. Radiographic techniques have been used for crack detection in
structures, and require, however, higher radiation energy input for increasing material
thickness, which increases the cost of operation or equipment. Work on non-destructive
testing by vibration technique has been reported by Cawly and Adams (1979).

A crack which occurs in a structural element causes some local variations in its stiffness
which affect the dynamics of the whole structure to a considerable degree. The frequencies
ofnatural vibrations, amplitude of forced vibrations, local flexibilities and areas ofdynamic
stability change due to the existence of such cracks have been studied by Petroski (1981),
Gudmundson (1984), Christides and Barr (1984), Gounaris and Dimarogonas (1988), Shen
and Pierre (1990) and Gao and Herrman (1992). An analysis of the changes makes it
possible to identify the cracks without disassembly of the system. A method of analysis of
the effect of two open cracks upon the frequencies of the natural flexural vibrations in a
cantilever beam is presented by Ostachowicz and Krawczuk (1991). Two types of cracks
single sided and double sided-are considered, assuming that the cracks occur in the first
mode offracture, i.e. the opening mode. The influence of the slenderness ratio ofa stationary
shaft with an open crack on the dynamic behaviour ofthe beam was investigated by Kikidis
and Papadopoulos (1992). Their results were obtained by using the Euler-Bernoulli theory
and compared with those from the Timoshenko theory. The natural vibrations of a cracked
stationary shaft system, that is a continuous cracked shaft with elastically mounted end
mass, is investigated by EI-Dannanh and Farghaly (1994).

An exact approach is extensively used to analyse the vibrations of beams carrying
intermediate masses. In this approach the frequency and mode shape equations may be
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derived by dividing the beam into segments at each point of which the beam has an
intermediate concentrated element. One then formulates the equation of motion for each
segment, and needs the solution to each of these equations to satisfy all the boundary
conditions and the continuity conditions at the ends of the particular segment. Many
authors have used this approach to study the free and forced vibrations of beams carrying
concentrated masses and/or elastic supports at intermediate points with various boundary
conditions. For this, only selected references are given. Srinath and Das (1967) studied the
fundamental eigenfrequencies of a simply supported uniform beam carrying an arbitrary
located mass having rotary inertia. Liu and Huang (1988) determined the first five eigen
frequencies of a uniform cantilever beam restrained against rotation at its base, and with
an intermediate translational and rotational elastic constraint, and carrying a heavy load
at its tip. The application of this approach to the solution of a beam problem with
intermediate concentrated elements at n different points involves the solution of n sim
ultaneous boundary value problems, and the solution generally gives a complicated charac
teristics equation. Bapat and Bapat (1987) used this approach together with the transfer
matrix method to treat the free vibrations of a uniform beam having any number of
intermediate point masses and elastic supports. Numerical study of the convergence charac
teristics and accuracies of three approximate discretization methods, Rayleigh-Ritz, Galer
kin, and finite element as applied to the analysis of linear bending free vibrations of
cantilever beam carrying a mass with rotary inertia at the free end and another at an
intermediate point, has been presented by Hamdan and Abd-EI Latif (1992). An anlytical
study of a system of elastically supported multi-span stepped uniform beams has been
presented by Farghaly (1994). The beam was loaded at the end as well as at intermediate
points with inertial and elastic elements. Exact natural frequencies were obtained for
uniform and stepped beams with three or two spans.

Although researchers have focused on beam systems with concentrated masses or
cracks, no one (to the best of the author's knowledge), has completely treated the combined
problem as presented in the following investigation in which parametric studies are carried
out for the effect of the stiffness of the elastic constraints, the location and magnitude of
the cracks, the concentrated masses and their rotary inertia, for the 10 combinations of the
classical end conditions, on the natural frequency parameters and mode shapes of the
system. The results of this investigation are compared with existing published results. For
convenience, all results are presented in dimensionless form. Ostachowicz and Krawczuk
recent flexibility polynomials are used in the formulation of the problem. Also, derivation
of the characteristic equation is based on Euler~Bernoullibeam bending theory and conse
quently a simple algorithm is to be used to solve this equation. However, it is believed that
the results of this study may be useful to engineering design and non-destructive testing
analysts as a tool for diagnosis and detection of cracks in engineering applications.

2. ANALYSIS

2.1. Elastic behaviour ofa cracked beam
The crack flexibility depends on the crack orientation and magnitude with respect to

the main dimensions of the cracked member and on the applied loadings and the mode of
deformation. In the following, the cracks are assumed to occur in the first mode offracture :
i.e. the opening mode. The non-dimensional local flexibility of the double-sided cracked
section of equal depth (Ostachowicz and Krawczuk, 1991; Alturi, 1986; Haisty and
Springer, 1988), may be written in the fbrm

(I)

where



and
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fD('"Y) = O.5335-0.929y+3.500y2-3.l8ly3+5.793y4
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y = dJh; Ii = hJL.

On the other hand, the equivalent flexibility at the location of the single-sided crack is
formulated as used in Gudmundson (1984) and Ostachowicz (1991), and its non-dimen
sional form may be written as:

where

(2)

2.2. Cracked beam mode
The crack is assumed to be open and to have uniform depth. It is known that the

modes of harmonic vibration on the three segments of the beam system shown in Fig. 1, in
non-dimensional form (Bishop and Johnson, 1979), are:

(3a)
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Fig. I. Elastically restrained beam with two cracks and intermediate concentrated masses: (a) single
sided crack section; (b) double-sided crack section; and (c) crack model and the system co-ordinates.
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(3b)

(3c)

where Y], Y2 and Y3 are the solutions of the polynomial of the system equation of motion

i=1,2,3.

This is the well known fourth order Euler-Bernoulli equation ofmotion for beams vibrating
in the bending mode. In equations (3), A h A 2, •. _, and A 12, are unknown coefficients to be
determined from the boundary, continuity and compatibility conditions, p4 = pAL40.2/E/,
0. is the circular frequency, p is the beam material density, A is the cross-sectional area and
,; = x;/L, where X; is the co-ordinate along the beam for the ith segment. If the unknown
coefficients are obtained, the system mode shape can be determined.

2.3. Application to the present model
The model presented is a uniform beam elastically restrained against rotation and

translation at each end, and carrying lumped masses with rotary inertia at two arbitrary
intermediate points whose local flexibility may be reduced to the existence of open cracks.
The boundary conditions are

at' = 0

at' = 1:

(4a)

(4b)

(4c)

(4d)

here, <1>; = cP;L/E/; and Z; = K;L 3/E/; i = 1, 2, are the rotational and the translational
rigidity parameters of the ends respectively. If e, = LdL and e2 = L 2/L are the non
dimensional crack positions, the continuity conditions at these positions are

here

(5a)

(5b)

(5c)

(5d)

(5e)

(5f)

J; = J;/(pAL 3) ; i = 1,2

and the compatibility conditions due to rotational flexibility at the crack location are

(6a)
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(6b)

For single-sided cracks, (); = 6n:yl/i!s(Y;), i = 1, 2, and for double-sided cracks, (}j =
6nyl/i!o(y;) , i = 1, 2. Combination of eqns (3) with eqns (4-6) yields the characteristic
equation (7) which in turn gives the natural frequencies:

det ([FF] + [CM] + [ES] + [CR)) = 0 (7)

where [FF] is a matrix 12 x 12 for a free-free beam, [CM] is a matrix representing the
lumped masses and their rotary inertia, [ES] is a matrix of the end rigidity parameters,
while [CR] is a matrix representing the local crack flexibility elements. These matrices may
be written in a proposed discrete form as
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0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

-JJ33ca l -J1P3sal -JIP3chal -JIP3shal 0 0

[CM] =
0 0 0 0 mJ3sa i mlPcal
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0 0 0 0 0 0
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where

al = eIP; az = ezp; VI = 8 IP; Vz = 8zp;

she ) ,g, sinh ( ); ch( ) ,g, cosh ( ); s( ) ,g, sin ( ); and c( ) ,g, cos ( ) .
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3. APPLICATIONS AND RESULTS

3.1. Natural frequency and mode shape results
3.1.1. Comparison with previous results. To check the validity ofcharacteristic eqn (7),

two examples are chosen. The first is a cantilever beam, having two different cracks ofdepth
parameters 1'1 = 0.5 and 1'2 = 0.3 located at' = 0.1 and' = 0.2 respectively (Ostachowicz
and Krawczuk, 1991) while the second example is a cantilever beam, carrying two inertia
elements located at el = 0.5 and e2 = 1.0 and having mt = it = 0.1 and m2 i 2 = 0.1
respectively (Hamdan and Abd-EI Latif, 1992). To obtain the numerical results two com
puter programs were developed and then run using FORTRAN 77 and PC-MATLAB
software on an AMSTRAD PC286, the false position technique being used to bracket the
system roots (eigenvalues or frequency parameters). The results have been computed taking
into account the effect of all design parameters: crack and mass location parameters e I and
e2; crack depth parameters 1'1 and ')12; slenderness ratio s; intermediate mass parameters
mj and m2; and the end rigidity parameters (}>I, Zl> (}>2 and Z2' Table 1 shows that the
results obtained using derived equation (7) and those of previous investigators are in good
agreement.

For the examples 1 and 2 depicted in Table 1, the five mode shapes are plotted in Fig.
2. For example 1, Fig. 2(a) shows a discontinuity in the slope that appears at the crack
locations if they exist around the points in which the respective curvatures reach the highest
values corresponding to the higher mode shapes. Also, if the crack is close to a nodal point,
the mode shape is unaffected by the crack, even for high values of depth. The changes in
the local slope due to cracks may be significant for the higher modes, in agreement with
reports by Shen and Pierre (1990) ; this may depend on the system end conditions and the
relative crack locations with respect to the nodal points. It is interesting to note that to
estimate a crack position and depth from vibration measurement, both the modal frequency
and mode shape are needed.

Table I. Comparison of present results with those of previous works:
Ostachowicz (1991) and Hamdan (1992)

Example I Example 2

Design parameters

Crack parameters
e l

el
YI
Y2
Ii

Ostachowicz
(1991)

0.1
0.2
0.5
0.3
0.1

Present

0.1
0.2
0.5
0.3
0.1

Hamdan
(1992) Present

0.5 0.5
1.0 1.0

VS
VS
VS

Mass parameters
m,
ml
J,
J 2

VS
VS
VS
VS

0.1
0.1
0.1
0.1

0.1
0.1
0.1
0.1

SAS 31:6..J

Rigidity parameters
$1 VL
2 1 VL
$2 ~

2 2 VS

The output first five frequency parameters
PI 1.5452 1.545192
pz 4.496557
P3 7.648008
P4 10.655835
fJ; 13.737517

Not included, VS = 0.00000oo1, VL 1OOOOOOOO.

VL
VL
VS
VS

1.433977 1.433977
2.437469 2.437468
3.843954 3.843953
5.361086 5.361085
9.811747 9.811732
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Fig. 2. The first mode shapes for the results depicted in Table I, (a) example I, and (b) example 2.

The effect of the concentrated masses and their rotary inertia (example 2) on the mode
shapes is illustrated in Fig. 2(b). It can be seen from this figure that, for the inertia elements
considered, the node of the second and the third mode disappeared as in the first mode,
while the fourth mode became similar to the second mode, etc. One can obtain easily the
system mode shapes for the 10 cases plotted in Figs 3-13. It is interesting to note that, for
more than one crack in a beam, the first five modes may be required for the crack detection.

3.1.2. Continuous systems with crack located at the same point of the concentrated
mass m l' Four of the classical end conditions are combined into 10 cases using the two
extreme values of the end rigidity parameters (VS = 0.00000001, and VL = 100000000,
corresponding to 0 and Cf)) respectively. All results are presented in terms of modal fre
quency ratio O,-the ratio of the cracked beam frequency to that of the uncracked beam
(see Table 2 for details), and the crack location parameter '-the ratio of the crack location
co-ordinate to the beam length L. The effect of a crack whose location can take any position
along the beam length with and without lumped mass on the lower two frequencies is shown
in Figs 3-12. The concentrated mass together with the crack are moved from' = 0.1 to
, = 0.9 along the beam length. Three different crack depth parameters are chosen: Y I = VS,
Y1 = 0.3 and Y1 = 0.6. The results are obtained for five different mass parameters: m1 = VS;
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Table 2. Frequency values Wi fJi~ for uncracked beams and for various classical end
conditions (Bishop and Johnson, 1979)

2289

Frequency values

End conditions Model Mode II Mode III

Clamped-free
Clamped-clamped and frec-free
Clamped-pinned and pinned-free
Pinned·-slide
Pinned-pinned and slide-slide
Clamped-slide and slide-free

3.51602
22.3733
15.4182

(n/2) ,
n'

5.59332

22.0345
61.6728
49.9649
(3nI2) ,
(2n) ,

30.2258

61.6972
120.903
104.248
(SnI2) ,
(3n)'

74.6389

0.5; 1.0; 2.0; and 4.0. It can be seen from the curves in these figures that as the values of
the crack depth and the mass parameter increase, the value of the eigenfrequency ratio
0; (i = 1,2) decreases gradually from the left group of Figs 3-12 to the right one, as may
be expected. For beam configuration in which the slope due to bending together with the
lateral movement, at one or two of the beam ends, are not allowed, the natural frequency
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Fig. 3. Effect of the variation in the crack and mass location for the first two natural frequency
ratios 0, and 0, for a clamped-free beam: m, = VS, --; m, = 0.5, ----; m, = 1, ---;
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ratios 0, and O2 for a free-free beam. Key as Fig. 3.

0.90.5 0.7

~
0.3

..... ". ", ' /. ,.............. ..../

+~.•"'---=-=-.- / '... -... ...
~)( )l

0.90.70.5

~
Q3

'1',=0.3

. ....,
"~" ". .......... ./- - -- - ,

)( ..... ----- _/.." . .~ ....
--,,--"'''

0.9OJ0.5

~
03

l,=vs

'~::;;;" ,.' ~. ....._----_.... .

~
-l ••' "------<.

I • • • • • ..

:~-~~

0.3 '--_-'-_----'-__..L--_~ L __L.-_--'-__L-_....J '-__'--_--'-_---'__--l

0.1

0,4

Q2

1.0
0.9

1.0

0,8

CO.6

Fig. 6. Effect of the variation in the crack and mass location for the first two natural frequency
ratios 0, and O2 for a clamped-pinned beam. Key as Fig. 3.

Fig. 7. Effect of the variation in the crack and mass location for the first two natural frequency
ratios 0, and O2 for a pinned-free beam. Key as Fig. 3.
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remains unaffected, at some points, by cracks and/or the masses of various values (even
large). This may be due to vanishing bending moment at these points. These points are well
known as the nodal points. On the contrary, the effect of the cracks together with the mass
becomes dangerous at some other points in which the modal bending moment reaches its
maximum value. Interesting points are observed in which the increase in the crack depth
decreases the system's natural frequency, while the frequency itself is unaffected by the
variation in the associated mass. This is observed only if one or two of the system end
conditions become free (i.e. 2 1 = <1>1 = 0 and/or 2 2 = <1>2 = 0). For small crack depths
Y I < 0.3, slight reduction in the frequencies is observed, meaning that frequencies have little
sensitivity to the presence of small cracks.

3.1.3. Continuous systems with crack not located at the same point of the concentrated
mass mi' The effect of a crack not coinciding with the mass on the fundamental frequency
ofthe system is computed for the 10 combinations of the well known classical end conditions.
Five crack depth parameters: Y2 = VS; 0.2 ; 0.4 ; 0.6; and 0.8 are chosen for this application.
The results are obtained considering ml = 1 located at el = 1/3. Figure 13 shows the
variation in the system fundamental frequency due to the variation in crack depths along
the beam length (from' = 0.1 to' = 0.9). In general, as can be seen from these figures, an

0.3
0.1 0.3 US

f
Q7 0.3 0.5

~
0.7 0.9 U3 0.5

~
0.7 09

Fig. II. Effect of the variation in the crack and mass location for the first two natural frequency
ratios 0, and OJ for a damped--slide beam. Key as Fig. 3.
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Fig. 12. Effect of the variation in the crack and mass location for the first two natural frequency

ratios Of and O 2 for a slide-free beam. Key as Fig. 3.
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0,.1'2 = VS,-;1'2 = 0.2,---; 1'3 0.4,----;1'2 = 0.6•••• ; 1'2 = 0.8,-x-; for the

10 combinations of the four classical end conditions.

increase in the crack depth decreases the system's natural frequency, except some points in
which the crack is unaffected at this frequency. The crack becomes dangerous at certain
points along the beam length, depending on the respective modal bending moment.

3.1.4. Single-sided and double-sided cracked system. An application example of a
clamped-free beam loaded with an end mass of m2 = 0.5 and three values of mass rotary
inertia, J2 = us, 0.01 and 0.1, are considered. Three crack locations, el = 0.2, 0.4, and 0.6,
each having the relative crack depths, rl = us, 0.3 and 0.6, respectively. The first three
frequency ratios OJ = (PjPiJ 2 are obtained for the single-sided and double-sided cracked
cross-section of equal depth and the results are shown in Table 3. As can be seen from this
table, the double-sided cracks affect the vibration frequencies to differences not exceeding
10% from that of single-sided cracks of the same relative depth and location. Ostachowicz
and Krawczuk (1991) have stated that the differences are not very large; however, they
obtained results for the first mode of vibration only. Also, one can observe that an increase
in the end mass rotary inertia decreases the system's natural frequencies.

3.2. Slenderness ratio effect
The results obtained in example 1 of Table 1 are recomputed for the slenderness ratio

S > 10. The change in frequency ratio for the same data for the chosen application of this
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Table 3. The differences between the first three modes of single-sided (ss) and
double-sided (ds) cracked cross-section for cantilever beam with end mass and

rotary inertia

e J i'J J, II III

0.20E+00 0.IOE-08 V8 ss 0.57909 0.78087 0.85552
ds 0.57909 0.78087 0.85552

0.01 55 0.57073 0.61625 0.53146
ds 0.57073 0.61625 0.53146

0.10 ss 0.50396 0.29425 0.42433
ds 0.50396 0.29425 0.42433

0.30E+00 vs ss 0.53024 0.77692 0.84582
ds 0.53313 0.77715 0.84385

0.01 ss 0.52299 0.61222 0.53128
ds 0.52582 0.61245 0.53132

0.10 ss 0.46505 0.29044 0.42429
ds 0.46732 0.29065 0.42429

0.60£+00 vs ss 0.40582 0.76846 0.80725
ds 0.34826 0.76540 0.79650

0.01 ss 0.40089 0.60377 0.53004
ds 0.34427 0.60070 0.52990

0.10 55 0.36168 0.28263 0.42422
ds 0.31216 0.27990 0.42422

0.40E+00 0.30£+00 vs ss 0.55286 0.75329 0.80636
ds 0.55447 0.75488 0.81219

0.01 ss 0.54462 0.60499 0.50732
ds 0.54622 0.60566 0.50898

0.10 ss 0.47966 0.29369 0.40210
ds 0.48116 0.29732 0.40335

0.60E+00 vs ss 0.46911 0.68557 0.73335
ds 0.42083 0.65718 0.70823

0.01 ss 0.46149 0.57397 0.45919
ds 0.41369 0.55938 0.44249

0.10 ss 0.40354 0.29214 0.35366
ds 0.36047 0.29140 0.33551

0.60E+00 0.30E+00 vs ss 0.56882 0.72076 0.83745
ds 0.56947 0.72420 0.83343

0.01 55 0.56007 0.57689 0.52728
ds 0.56047 0.57919 0.52764

0.10 ss 0.49082 0.28446 0.41045
ds 0.49164 0.28503 0.41124

0.60E+00 vs ss 0.52919 0.57909 0.81905
ds 0.50056 0.52043 0.80822

0.01 55 0.51909 0.47813 0.51853
ds 0.48962 0.43503 0.51520

0.10 ss 0.44253 0.25745 0.37875
ds 0.40993 0.24467 0.36649

example is depicted in Table 4. It is interesting that the frequency ratio for the shorter beam
decreases more rapidly than for the longer one, thus, the frequencies of short beams appear
to be more sensitive to cracks than those of slender beams, particularly for the first mode.
For higher modes this observation may diminish. For slenderness ratios s< 10, it is

Table 4. Slenderness raio effect for the first five frequency ratios
!1, (p,/p,.) , for example I of Table I

Modal frequency ratio

s Model Mode II Mode III Mode IV Mode V

10 0.6791 0.9176 0.9480 0.9382 0.9442
20 0.7946 0.9448 0.9720 0.9651 0.9615
40 0.8799 0.9661 0.9853 0.9834 0.9762

100 0.9463 0.9842 0.9939 0.9913 0.9888
200 0.9723 0.9916 0.9969 0.9932 0.9941
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necessary to use the Timoshenko beam theory in which the rotary inertia and the shear
deformation effects should be taken into consideration, in both the equation of motion and
the end conditions as well as the continuity and compatibility (Kikidis and Papadopoulos,
1992).

3.3. Diagnosis capability
The natural frequencies of the system and mode shapes are considered as the main

data required to monitor any machine or structure (Muszynska, 1991). Analytical models
of the machine or structure's dynamic behaviour, particularly the model based on a modal
approach, are of tremendous value in future diagnostic procedures. The model presented
herein is valid to obtain numerical data for stationary beam-mass type structures of
important application, such as robot arms (Abramovich and Hamburger, 1992). It is
interesting to note that the present model should be modified for rotating beams (rotors)
which undoubtedly have different crack models (Gasch, 1993).

From the dynamic point of view, the qualitative charts presented in this work may
help the designer to be familiar with the system behaviour in designing suchlike problems.
In addition, these charts may be considered as one of the tools required in crack diagnostic
procedures. Regarding the first group (Figs 3-12), if the experimental results are carried
out and the first few frequencies are known, the identification of crack depth becomes
possible by using a suitable technique and the present analysis. Also, for the second group
(Fig. 13), both crack location and magnitude may be identified when the experimental
frequencies are known.

On the other hand, for mass(es) beam systems, the magnitude and location of an
intermediate mass may be detected. One can follow the variation in the modal frequency
parameters (Fig. 14) for a typical case of end mass loaded cantilever beam with m2 = 0.5
carrying an intermediate mass which moves along the beam length. Four values of inter
mediate mass ratio are chosen: mI = VS, 0.25, 0.5 and 1.0. As expected, an increase in the
mass decreases the frequency ratio; and also, for each specific mode, there is an interesting
point at which the frequency becomes minimum.

4. CONCLUSIONS

A modal analysis study of the influence on the system vibration modes of one or two
cracks in a uniform prismatic beam elastically restrained against rotation and translation
at both ends and carrying lumped masses with rotary inertia is presented. The mathematical
formulation of this study is based on the well known Euler-Bernoulli bending theory and
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freshly derived flexibility polynomials for transverse open cracks. A system frequency
equation in a discrete matrix form is derived. Parametric studies are carried out for the
effect of stiffness of elastic constraints, the location and magnitude of the cracks, the
concentrated masses and the rotary inertia, for the 10 combinations of the well known four
classical end conditions, on the natural frequency parameters and mode shapes of the
system. Good agreement is found between the results obtained using the derived system
frequency equation and those of previous investigators. The present analytical diagnostics
pennit the user to run the program to analyse the cracked beam system to verify the
presence of the crack signature by comparing the test data with analytical predictions. The
user would have to judiciously select and tryout different locations and depths for the
analysis. The present model can be easily extended to the case in which the beam may be
attached to more than two concentrated intermediate masses located at positions with or
without transverse open cracks. Elastic elements may be added to the intermediate elements
for more applicable systems.
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APPENDIX: NOMENCLATURE

A
Ai, i= 1-12
ai, i = 1,2
b
d

cross section area of the beam
unknown coefficients
parameters defined as in equation (7)
width of the beam
crack depth
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Abbreviations
C
F
P
S
VL
VS
Y'
Y"
y'"
y""
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= L I / L, non-dimensional location parameter of the point I
=L,/L, non-dimensional location parameter of the point 2
Young's modulus of elasticity
height of the beam section
= h/L, inverse of the slenderness ratio S
second moment of cross-sectional area
mass moment of inertia of the mass m I

=J1/pAL 3

mass moment of inertia of the mass m,
=J,/pAL 3

stiffness of the translational spring at the left end
stiffness of the translational spring at the right end
total length of the beam
length of the beam segment I
distance between the second crack location and the left end
= pAL, total mass of the beam
attached mass at the crack location I
=m1/m
attached mass at the crack location 2
=m,/m
slenderness ratio
distance
transverse displacement
= K I L 3 / EI, translational spring rigidity parameter at the left end
=K,L3/EI, translational spring rigidity parameter at the right end
= (pAL4n'/EI)°25, frequency parameter
frequency parameter of ith mode for cracked beam
frequency parameter of ith mode for uncracked beam, Table 2
=d1/h, crack depth parameter at point I
=d,/h, crack depth parameter at point 2
=x/L
local flexibility of the crack I
local flexibility of the crack 2
local flexibility of the single-sided crack
local flexibility of the double-sided crack
mass density of the beam material
stiffness of the rotational spring at the left end
= <P I L/EI, rotational spring rigidity parameter at the left end
stiffness of the rotational spring at the right end
= <p ,L/EI, rotational spring rigidity parameter at the right end
natural frequency value of the ith mode, Table 2
= circular frequency

means clamped (fixed) end
means free end
means pinned (hinged) end
means slide (guided) end
= 100000000
=0.00000001
means dY/d(, the first derivative of Y, w.r.t. (
means d'Y/d(', the second derivative of Y, W.r.t. (
means d 3 Y/de, the third derivative of Y, w.r.t. (
means d4Y/d(4, the fourth derivative of Y, w.r.t. (
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